Shear Behaviour of Geosynthetics in the Inclined Plane Test – Influence of Soil Particle Size and Geosynthetic Structure

Author:

Lopes P.C.1,Lopes M.L.2,Lopes M.P.3

Affiliation:

1. Department of Civil Engineering, Geotechnical Division, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telephone: 351/22 5081729, Telefax: 351/22 6053868

2. Department of Civil Engineering, Geotechnical Division, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telephone: 351/22 5081729, Telefax: 351/22 6053868, E-mail: lcosta@fe.up.pt

3. Civil Engineering Division, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal, Telephone: 351/234 370941, Telefax: 351/234 370094, E-mail: mlopes@civil.ua.pt

Abstract

This paper reports the investigation of the shear behaviour of six geosynthetics with two granular soils. The test equipment, soils, and geosynthetics properties are described and the soil-geosynthetic interaction behaviour is studied. The influence of soil particle size, geosynthetic structure, and test method are discussed by analysing the results of inclined plane tests. The main conclusions of the study are as follows: geosynthetic structure has an important influence on the soil-geosynthetic interface friction angle; higher soil-geosynthetic interface friction angles are measured when the geosynthetic surface has significantly sized apertures (e.g., geogrids) or allows the penetration of soil particles into the geosynthetic (e.g., nonwoven, spun-bonded geotextiles); geosynthetic surface roughness (e.g., geomembranes) is associated with higher soil-geosynthetic interface friction angles; soil particle size has an important influence on the soil-geosynthetic interface friction angle; broadly graded soils with large average soil particle sizes allow an increase in the soil-geosynthetic interface resistance; the method of test does not significantly influence the soil-geomembrane or soil-geotextile interface friction angles (geosynthetics with continuous surfaces); and the validity of evaluating the soil-geogrid interface resistance using a rigid support (Test method 1) depends on the structure of the geogrid. It is suggested that site conditions is the greatest factor to consider when selecting the most appropriate test method.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3