Shear Strength Characteristics of PVC Geomembrane-Geosynthetic Interfaces

Author:

Hillman R.P.1,Stark T.D.2

Affiliation:

1. Golder Associates, Inc., 10 Chrysler, Suite B, Irvine, California 92618, USA, Telephone: 1/949-583-2700, Telefax: 1/949-583-2770,

2. 2217 Newmark Civil Engineering Laboratory, University of Illinois, 205 N. Mathews Ave., Urbana, Illinois 61801, USA, Telephone: 1/217-333-7394, Telefax: 1/217-333-9464,

Abstract

Torsional ring shear and large-scale direct shear tests were conducted to investigate the shear behavior of polyvinyl chloride (PVC) geomembrane-geosynthetic interfaces. Specifically, the smooth and faille-finished sides of a 0.75 mm-thick PVC geomembrane were sheared against five different nonwoven geotextiles, a drainage composite, a geonet, and an unreinforced geosynthetic clay liner (GCL). Test results indicate that the smooth side of the PVC geomembrane yields a higher interface shear resistance than the faille-finished side due to the larger contact area and higher pliability of the smooth side. The interface shear behavior of the PVC geomembrane is compared to that of a high density polyethylene (HDPE) geomembrane and two very flexible polyethylene (VFPE) geomembranes. Faille-finished PVC geomembrane-nonwoven geotextile interfaces experience a post-peak strength loss of less than 25% at normal stresses between 100 and 400 kPa and no post-peak strength loss at normal stresses of 50 kPa and below. This behavior is attributed to the pliability of the PVC geomembrane, which enables (i) the geomembrane surface to be roughened, (ii) the other interface component to embed into the geomembrane as shearing progresses, and (iii) no texturing to be used that can damage the overlying geosynthetic. The effects of nonwoven geotextile fiber type, mass per unit area, and calendering on PVC geomembrane-nonwoven geotextile interface strength are also investigated.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3