Structural damage identification of high-order shear beams based on a genetic algorithm

Author:

Yao Peng1,Lu Mengyang1

Affiliation:

1. Civil Engineering and Transportation Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China

Abstract

The beam structure is the main load-bearing structure of engineering projects. High-order shear beams are widely used in engineering. Therefore, damage identification of beam structures is important to guarantee project quality and life safety. To identify the location and depth of cracks in a beam structure, a genetic algorithm (GA) and a damage identification model are combined. This method optimises the back-propagation neural network by using the ability of the GA to find the global optimal solution. The natural frequency (NF) of the cracked beam is obtained through finite-element analysis, and the NF is taken as the input of the model, and the crack location and depth are taken as the outputs of the model. In the experiment, it is found through regression analysis that the predicted output value of the model has a high coincidence with the real value, and its regression coefficient reaches 0.99842. Through an example analysis, the sum of squares of the prediction error of the model is 5.6. The average relative errors of the beam crack location and crack depth are 0.54 and 4.15%, respectively. The experimental results show that the proposed model has a high prediction accuracy and can accurately identify damage to the beam structure.

Publisher

Thomas Telford Ltd.

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Advanced technologies for smart buildings and infrastructure (Part 2) – addressing Sustainable Development Goals;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3