Mechanical properties and reaction products of reactive magnesia and CFB slag/silica fume pastes

Author:

Chen Shuo1,Wang Lijiu1,Wu Zhenlin2,Zhang Tingting3

Affiliation:

1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China

2. School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian, China

3. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China (corresponding author: )

Abstract

Reactive magnesium oxide (RMO) and circulating fluidised bed combustion (CFB) slags were used to prepare magnesium silicate cements using sodium hexametaphosphate (NaHMP) as a water reducer. The effects of curing condition and the initial levels of RMO and silica fume (SF) were studied for up to 90 d. The mechanical properties of the prepared pastes were evaluated through measurements of compressive strength. Mercury intrusion porosimetry (MIP) was employed to investigate the pore structure. X-ray diffraction, thermogravimetric analysis, mercury penetration analysis and scanning electron microscopy (SEM) were carried out to investigate the reaction products and final products. The results indicated that the final products were mainly magnesium silicate hydrate, hydrotalcite phases and hydromagnesite. Steam curing yielded higher strength, increased reaction products and closure of the macropores. SEM analysis showed that the product after steam curing exhibited abundant nanolattice structures (length ≤100 nm). MIP analysis showed that steam curing led to lower porosity and fewer macropores. The specimen prepared with 64 wt% CFB slag, 16 wt% SF and 20 wt% RMO exhibited the highest compressive strength (105 MPa).

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3