Chloride penetration in concrete subject to wet/dry cycling: influence of moisture content

Author:

Arya Chanakya1,Bioubakhsh Samira1,Vassie Perry1

Affiliation:

1. University College London, London, UK

Abstract

Concrete structures suffer from corrosion if chloride ions in the environment penetrate to the depth of reinforcing steel; surfaces periodically wetted with chloride solution are at most risk, when chloride ions can enter concrete by combined diffusion and absorption. BS8500-1 recommended minimum cover requirements primarily assume that chloride ingress is diffusion controlled, and absorption is only partly accounted for, so cover values may be inadequate. This paper investigates factors that influence absorption of chloride ions into concrete and how this affects distribution of chloride at different depths from the surface. Concrete cubes (CEM I cement; water/cement ratio 0·45) are subjected to repeated wetting (with 50% saturated salt solution) and drying cycles, during which their mass is monitored. The effective porosity, weight and distance sorptivity and chloride penetration depths are calculated for a number of curing, conditioning and drying conditions. Samples are extracted from the cubes at a range of depths and analysed for chloride content. Results show that the quantity of chloride entering the concrete, and in particular surface chloride content, is very sensitive to effective porosity/drying conditions immediately before wetting; also as much as 31% of the protection provided by concrete cover can be lost after exposure to just one wet/dry cycle, thereby significantly reducing time to corrosion of concrete structures.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

Reference30 articles.

1. Near surface characteristics of concrete containing supplementary cementing materials

2. Bamforth PB , Price WF , Emerson M . An International Review of Chloride Ingress into Structural Concrete, 1997, Transport Research Laboratory, Wokingham, Berkshire, UK, 162, TRL Contractor Report 359.

3. Corrosion of Steel in Concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3