Bearing capacity on sand overlying clay soils: experimental and finite-element investigation of potential punch-through failure

Author:

LEE K.K.,CASSIDY M.J.,RANDOLPH M.F.

Abstract

When a jack-up spudcan foundation is installed on seabeds consisting of a sand layer overlying soft clay, the potential for ‘punch-through' failure exists. This happens as a result of an abrupt reduction in bearing resistance when the foundation punches a block of sand into the underlying soft clay in an uncontrolled manner. This paper details an extensive series of 30 tests of flat circular and spudcan foundations continuously penetrated through samples of sand overlying clay, and performed under relevant stress conditions using a drum centrifuge. The large testing area of the drum centrifuge was used advantageously to produce test results that could be compared directly with tests covering a sand thickness over foundation diameter of 0·21 to 1·12. Results from retrospective finite-element analysis of the experiments are also described, with back-calculated values of the stress-level-dependent friction and dilation angles in the sand during peak penetration resistance shown to fit correlations in the literature. The back-analysis showed that larger values of peak resistance gave lower friction and dilation angles, which is consistent with gradual suppression of dilatancy under high confining stress. When compared with published results from visualisation experiments, the finite-element analysis showed a similar failure mechanism during peak resistance, with a frustum of sand forced into the underlying clay at an angle reflecting the dilation in the sand.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference39 articles.

1. Barbosa-Cruz E. R. Partial consolidation and breakthrough of shallow foundations in soft soil. PhD thesis, 2007, University of Western Australia, Perth, Australia.

2. The strength and dilatancy of sands

3. Effect of Penetration Rate on Penetrometer Resistance in Clay

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3