Evaluation of a four-component composite landfill liner system

Author:

Stark Timothy D.1

Affiliation:

1. Professor of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

The performance of four different municipal solid waste landfill liner systems common in the United States, that is, USEPA Subtitle D prescribed composite liner system, composite liner system consisting of a geomembrane (GM) overlying a geosynthetic clay liner (GCL), Wisconsin NR500 liner system, and a proposed four-component composite liner system that is a combination of the GCL composite liner and Subtitle D liner system (with a 61-cm or 91·5-cm thick low hydraulic conductivity compacted soil), were evaluated in terms of leakage rate, solute mass flux, and cumulative solute mass transport. Leakage rates through circular and non-circular GM defects were analysed using both analytical and numerical methods. For the mass flux evaluation, solute transport analyses using GM defects and diffusion of volatile organic compounds through intact liners were conducted using one- and three-dimensional numerical models. Cadmium and toluene were used as typical inorganic and organic substances, respectively, in the analyses. The comparison shows that for the limited set of conditions considered, the four-component composite liner system outperforms the Subtitle D and Wisconsin NR500 liner systems based on leakage rate and mass flux and provides similar results to the GM/GCL liner system. Based on the analyses presented herein the four-component liner system is a viable choice for a protective Subtitle D composite liner system and provides some added protection to the GCL.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3