Effect of a soluble subgrade on leakage through a geomembrane defect

Author:

Fan J.1ORCID,Rowe R. K.2ORCID

Affiliation:

1. Postdoctoral Fellow, GeoEngineering Centre at Queen's-RMC, Department of Civil Engineering, Queen's University, Kingston, ON, Canada K7L 3N6,

2. Barrington Batchelor Distinguished University Professor, Canada Research Chair in Geotechnical and Geoenvironmental Engineering, GeoEngineering Centre at Queen's-RMC, Department of Civil Engineering, Queen's University, Kingston, ON, Canada K7L 3N6,(corresponding author)

Abstract

Leakage and erosion of a soluble subgrade overlain by a geomembrane with a 70-mm-long slit defect is examined. The subgrade (gypsum) solubility and its rate of dissolution from a solid state in contact with various solutions are investigated. In the absence of flow, the rate of dissolution is negligible. However, when there is flow there is dissolution, and if the flow is high enough, erosion. Erosion greatly increases fluid migration. The presence of an interface between the subgrade and a dissimilar material (e.g. a geomembrane) facilitates flow, dissolution, and erosion as the interface becomes an ever increasing preferential flow path, leading to a much greater leakage and erosion feature. The findings from this study highlight the risk of having a soluble subgrade below a single geomembrane used alone and exposed for the containment of liquids.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3