Transport of heavy metal contaminants in a composite liner under non-isothermal condition

Author:

Jiang W.1,Ge S.2,Feng C.3,Li J.4

Affiliation:

1. PhD student, State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Provincial Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China,

2. PhD student, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China,

3. PhD student, State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; PhD student, Hubei Provincial Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China,

4. Professor, Hubei Provincial Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China,(corresponding author)

Abstract

A mathematical model for the transport of heavy metal contaminants (HMCs) in a triple-layer composite liner with defective geomembrane under the non-isothermal condition is developed in this study, where the GMB/GCL/CCL (geomembrane, geosynthetic clay liner and compacted clay liner) composite liner is adopted as an example and the Langmuir adsorption model is incorporated. The proposed model is solved by the finite difference approach, and its correctness is validated by comparison with the experimental results, an existing analytical solution and another numerical method. Later, the transport behaviours of HMCs are explored with the established model. Compared with the isothermal condition, the non-isothermal condition enlarges the transport flux, but also reduces the concentration of HMCs. The relative concentration based on the Langmuir adsorption model is higher than that based on the linear adsorption model, which is related to the decrease of the retardation factor under the Langmuir adsorption model. Furthermore, the parametric study shows that when the leachate head  ht is between 1.0 and 3.0 m, the defined breakthrough time tb increases by about 1.57 a with the increase of GCL thickness lg by 1 cm, and the tb increases by about 9.07 a with the increase of CCL thickness lc by 0.1 m.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3