A simple model for tertiary creep in geomaterials

Author:

Osman Ashraf S1,Birchall Thomas J2,Rouainia Mohamed3

Affiliation:

1. Department of Engineering, Durham University, Durham, UK

2. Aecom, Newcastle upon Tyne, UK

3. School of Engineering, Newcastle University, Newcastle upon Tyne, UK

Abstract

This paper presents a constitutive modelling approach for the viscoplastic-damage behaviour of geomaterials. This approach is based on the hyperelasticity framework, where the entire constitutive behaviour is derived from only two scalar potentials: a free-energy potential and a dissipation function. The novelty of the new proposed model, in addition to being thermodynamically consistent, is that it requires only a few parameters that can be derived from conventional laboratory testing. The model has been specifically tested for its ability to reproduce a series of triaxial compression tests on core rock samples. The comparison between the viscoplastic-damage model predictions and experimental results shows that the model is remarkably successful in capturing the stress–strain response both at peak stress and in the region of material softening and the time to reach failure.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the isotache viscous modelling of clay behaviour using the hyperplasticity approach;Géotechnique;2022-05-17

2. Editorial;Geotechnical Research;2021-12

3. Editorial;Geotechnical Research;2021-09

4. A Phenomenological Primary–Secondary–Tertiary Creep Model for Polymer-Bonded Composite Materials;Polymers;2021-07-18

5. Editorial;Geotechnical Research;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3