Numerical modelling of integral abutment bridges under seasonal thermal cycles

Author:

Caristo Andrea1ORCID,Barnes Jeremy2,Mitoulis Stergios A.3

Affiliation:

1. Bridge Engineer, AECOM, Croydon, UK (corresponding author: )

2. Associate Director, Hewson Consulting Engineers, Guildford, UK

3. Assistant Professor, Department of Civil and Environmental Engineering, FEPS, University of Surrey, Guildford, UK

Abstract

Interest in integral abutment bridges (IABs) from the industry has increased in recent years. IABs are robust bridges without joints and bearings and hence they are durable and virtually maintenance free; moreover, the resulting cost-saving associated with their construction is significant, a fact that makes IABs appealing to agencies, contractors and consultants. However, their use in long-span bridges is limited by the complex soil–structure interaction. Thermal movements, horizontal loads and dynamic actions are transferred directly to the backfill soil, leading to settlements, ratcheting effects, high earth pressures and deterioration of the backfill soil. The longer the integral bridge the greater the challenge, as movements are increased. This paper provides an extended review of the techniques used in the international literature and in practice to alleviate the interaction between a bridge abutment and the backfill. Subsequently, the performance of an innovative isolation system for IABs using recycled tyres as a compressible inclusion is studied using detailed numerical models of a representative three-span IAB. The proposed isolation scheme was found to be an effective and sustainable method to isolate the structure from the backfill soil, reducing the pressures experienced by the abutments and the residual vertical displacements of the backfill soil.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation into soil ratcheting behind integral bridges using centrifuge modelling;Proceedings of the Institution of Civil Engineers - Bridge Engineering;2024-06-10

2. Effectiveness of displacement compensation units for integral abutment bridges;European Journal of Environmental and Civil Engineering;2024-05-10

3. A non-linear static analysis for the seismic design of single-span integral abutment bridges;Géotechnique;2024-01-12

4. Equivalent static methods for seismic design of straight integral abutment bridges;Earthquake Engineering & Structural Dynamics;2023-12-08

5. A Comprehensive Numerical Based Case Study on Abutment-Foundation-Backfill Behavior of a Railway Bridge;Transportation Infrastructure Geotechnology;2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3