Comparison of deep learning models to extract silt storage dams from remote sensing images

Author:

Hou Jingwei1ORCID,Zhu Moyan2,Hou Bo3

Affiliation:

1. Associate Professor, School of Civil and Environmental Engineering, Hunan University of Science and Engineering, Yongzhou, China; Hunan Engineering Research Center of Health Monitoring and Intelligent Utilization of Immovable Cultural Relics, Hunan University of Science and Engineering, Yongzhou, China (corresponding author: )

2. School of Geographical Sciences and Planning, Ningxia University, Yinchuan, China

3. College of Media, Hunan University of Science and Engineering, Yongzhou, China

Abstract

Determining the locations and shapes of silt storage dams (SSDs) is necessary before planning and constructing new ones or maintaining old ones. Google images with a spatial resolution of 0.54 m were cropped, labelled and enhanced to establish two schemes of remote sensing images that contain SSDs with different input and batch sizes. Five deep learning models (FCN (fully connected convolutional neural network, SegNet (deep convolutional encoder–decoder architecture for image segmentation), U-Net (convolutional networks for biomedical image segmentation), PSPNet (pyramid scene parsing network) and DeepLab-V3+) were constructed to extract SSDs from the images based on the two schemes. The loss curves, accuracies and extraction results derived from the five models were compared to identify the optimal model for SSD extraction. The results show that the overall accuracies, F1 scores and mean intersections over unions obtained from DeepLab-V3+ were, respectively, 95.29%, 70.33% and 74.13% for scheme 1 (S1) and 96.29%, 73.34% and 76.99% for scheme 2 (S2), which were better than the values for other models. PSPNet had the shortest training times (128 s/step for S1 and 348 s/step for S2). An input size of 480 × 480 pixels, a batch size of 4 and 2304 images enhanced the extraction accuracy and prevented overfitting. The results provide a reference for the planning, construction and maintenance of water and soil conservation measures.

Publisher

Thomas Telford Ltd.

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3