Equivalent stress block for normal-strength concrete incorporating strain gradient effect

Author:

Peng Jun1,Ho Johnny Ching Ming2,Pam Hoat Joen3,Wong Yuk Lung4

Affiliation:

1. PhD Student, Department of Civil Engineering, The University of Hong Kong, Hong Kong

2. Assistant Professor, Department of Civil Engineering, The University of Hong Kong, Hong Kong

3. Associate Professor, Department of Civil Engineering, The University of Hong Kong, Hong Kong

4. Associate Professor, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong

Abstract

To account for the different behaviours of concrete under uniaxial compression and bending in the flexural strength design of reinforced concrete (RC) members, the stress–strain curve of concrete is normally scaled down so that the adopted maximum concrete stress in flexural members is less than the uniaxial strength. However, it was found from previous experimental research that the use of a smaller maximum concrete stress would underestimate the flexural strength of RC beams and columns. To investigate the effect of strain gradient on the maximum concrete stress developed in flexure, a total of 12 plain concrete and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads separately. The maximum concrete stress developed in the eccentric specimens was determined by modifying the concrete stress–strain curve obtained from the counterpart concentric specimens based on axial force and moment equilibriums. The test results revealed that the maximum concrete stress increases with strain gradient up to a certain maximum value. A formula was developed to correlate the maximum concrete stress to strain gradient. A pair of equivalent rectangular concrete stress block parameters that incorporate the effects of strain gradient was proposed for flexural strength design of RC members.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3