A new technique for using multivariate adaptive regression splines (MARS) in pavement roughness prediction

Author:

Attoh-Okine N. O.1,Mensah S.1,Nawaiseh M.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Delaware Newark, USA

2. Department of Civil and Environmental Engineering, Florida International Univeristy Miami, USA

Abstract

The paper presents the application of a new statistical technique, multivariate adaptive regression splines (MARS), to a flexible pavement roughness prediction model. MARS is a non-parametric function estimation technique that shows great promise for fitting non-linear multivariate functions. The MARS approach was used to develop a roughness equation, based on available input, and was able to identify the threshold values of each input and the most important variables contributing to the roughness equation. The MARS technique allows easy interpretation of the relative importance of pavement condition variables, environmental factors and traffic for the overall fit.

Publisher

Thomas Telford Ltd.

Subject

Transportation,Civil and Structural Engineering

Reference13 articles.

1. Paterson W. D. O. Transferable Causal Model of Roughness Progression, 1989, TRB, National Research Council, Washington, DC, 70–84, Transportation Research Record 1215.

2. Carey W. N., Irick P. E. The pavement serviceability-performance concept, 1960, HRB, National Research Council, Washington, DC, 40–58, Bulletin 250.

3. Paterson W., Attoh-Okine N. O. Simplified models of paved road maintenance based on HDM-III, 1992, TRB, National Research Council, Washington, DC, 99–105, Transportation Research Record 1344.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regression;Data Analysis in Pavement Engineering;2024

2. Modelling the effects of flexible pavement distresses in the long-term pavement performance database on performance;Journal of Innovative Transportation;2023-12-31

3. Performance of Soft Computing Technique in Predicting the Pavement International Roughness Index: Case Study;International Journal of Pavement Research and Technology;2023-07-03

4. Predicting Pavement Roughness Using Deep Learning Algorithms;Transportation Research Record: Journal of the Transportation Research Board;2021-07-24

5. A weighted multi-output neural network model for the prediction of rigid pavement deterioration;International Journal of Pavement Engineering;2021-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3