Investigation by limit analysis on the stability of slopes with cracks

Author:

UTILI S.

Abstract

A full set of solutions for the stability of homogeneous c, φ slopes with cracks has been obtained by the kinematic method of limit analysis, providing rigorous upper bounds to the true collapse values for any value of engineering interest of φ, the inclination of the slope, and the depth and location of cracks. Previous stability analyses of slopes with cracks are based mainly on limit equilibrium methods, which are not rigorous, and are limited in their capacity for analysis, since they usually require the user to assume a crack depth and location in the slope. Conversely, numerical methods (e.g. finite-element method) struggle to deal with the presence of cracks in the slope, because of the discontinuities introduced in both the static and kinematic fields by the presence of cracks. In this paper, solutions are provided in a general form considering cases of both dry and water-filled cracks. Critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. The upper bounds are achieved by assuming a rigid rotational mechanism (logarithmic spiral failure line). It is also shown that the values obtained provide a significant improvement on the currently available upper bounds based on planar failure mechanisms, providing a reduction in the stability factor of up to 85%. Charts of solutions are presented in dimensionless form for ease of use by practitioners.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3