Stability of a strip foundation on a sand embankment over mine tailings

Author:

HOSSAIN M.S.,FOURIE A.

Abstract

Earthmoving equipment working on a progressively placed cover layer over mine tailings often experiences catastrophic ‘rotational' (or ‘punch-through') failure, with potential for loss of the equipment and harm to the operator. Although the performance of foundations on a homogeneous sand or clay slope is routinely calculated and investigated, comprehensive investigation of a thin, stronger slope overlying a softer layer is scarce. This paper reports the results of centrifuge model tests undertaken to provide insight into strip foundation behaviour during penetration, with freedom in horizontal displacement and rotation, adjacent to a sand embankment (cover layer), into a weaker clay layer (representing mine tailings). Variables were the set-back of the edge of the foundation from the crest of the slope, the height of the slope relative to the foundation size, and the normalised strength of the lower clay layer. Soil movement was captured continuously by a digital camera, and subsequently quantified through particle image velocimetry (PIV) analysis. The load–penetration responses were separately recorded. The effect of normalised set-back ratio (λ = b/B), slope height (η = H/B) and clay strength (suscB) on the evolving soil flow mechanisms and the penetration resistance profile is discussed in the context of the likelihood and severity of failure. Rotational failure, with a peak in penetration resistance followed by some reduction, occurred for all cases investigated except for a higher set-back of λ = 1·5. The severity of failure was greater the closer the proximity of the footing to the slope crest, and the greater the height of the slope, whereas it reduced as the normalised strength of the lower layer increased. Typical critical failure occurred in clear shear planes pushing a (nominally) rigid block of soil, with the shape of a hemisphere followed by a wedge, towards the slope.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3