A graphical method for producing yield surfaces for soils

Author:

CHANDLER H.W.,SANDS C.M.

Abstract

A procedure is described by which three-dimensional yield criteria and flow rules can be derived graphically by drawing envelopes. Using computer graphics, this provides the modeller with a simple, clear, precise and flexible method with which to generate data that can be compared with results obtained analytically or experimentally. As illustrative examples, yield surfaces are constructed in the constant-pressure plane in principal stress space using the Drucker–Prager and Frossard's dissipation functions, and two modified forms of Houlsby's dissipation function. For constant-volume flow these produce the Drucker–Prager, Mohr–Coulomb and Matsuoka–Nakai yield surfaces. Each is paired with both an isotropic and an anisotropic dilatancy rule. The direction of plastic flow at yield, consistent with the choice of dissipation function and dilatancy rule, can be determined from these constructions. One of the yield surfaces produced is compared with the results from true triaxial tests where the rate of dilatancy has been determined. An example of Rowe's stress–dilatancy plots is also produced.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3