Chemo-mechanical effects in kaolinite. Part 2: exposed samples and chemical and phase analyses

Author:

WAHID A.S.,GAJO A.,DI MAGGIO R.

Abstract

Continuing from part 1 of this paper, the results of laboratory tests on chemo-mechanical interactions in kaolinite subjected to the diffusion of inorganic, salt, acid and base solutions under an applied stress state are presented. Chemical analyses on the surnatant and analyses on X-ray diffraction patterns, high-temperature differential scanning calorimetry thermal gravimetry scans and transmission electron microscopy micrographs led to the conclusion that the bulk of kaolinite mineral is probably only slightly affected by the chemical interactions, the chemical attack being concentrated mainly at the particle edges, where it induces a change in the shape of the edges, which become irregular and less sharp. The mechanical behaviour of kaolinite is not affected by pore fluid salinity, but it is significantly affected by pore fluid pH: both acid or base solutions under an applied stress cause significant volumetric compression. Such strains are irreversible and probably related to the particle rearrangement induced mainly by the degradation of the particle edges, in addition to the decrease in basal friction angle (described in the companion paper) and the change of strength at edge-to-face contact points. The mechanical effects are slightly related to the dielectric constant of the pore fluid and this is consistent with the general conviction that interactions between kaolinite particles are mostly mechanical.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3