Smear zone identification and soil properties around stone columns constructed in-flight in centrifuge model tests

Author:

WEBER T.M.,PLöTZE M.,LAUE J.,PESCHKE G.,SPRINGMAN S.M.

Abstract

Stone columns are primarily used for the purpose of ground improvement in fine grained soils in order to reduce settlements and the risk of bearing failure. They are also designed to improve the drainage conditions in the ground and to accelerate the consolidation processes within the clay. However, smear and disturbing effects caused during the construction of stone columns result in degradation of consolidation performance in comparison with the theoretically ideal conditions. Model stone columns are constructed in-flight under 50 times gravity in centrifuge tests and the soil micro-structure in the vicinity of these columns is investigated by applying different methods, including environmental scanning electron microscopy and mercury intrusion porosimetry. The results of these tests confirm that smear and disturbance occur owing to stone column installation and the region influenced can be divided into three sections: a penetration zone (1) where the sand particles are squeezed through the clay; a smear zone (2) where the soil particles have experienced a significant reorientation; and a densification zone (3) where the structure of the clay does not appear to change, but compaction of the clay is measurable. The extremes of the disturbed zone around model stone columns are determined to extend to about 2·5 times the column radius.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3