Early formation of belite in cement clinker raw materials with slag

Author:

Viggh Erik1ORCID,Eriksson Matias2ORCID,Wilhelmsson Bodil3ORCID,Backman Rainer4ORCID

Affiliation:

1. Research Student, Tec-Lab, Umeå University, Umeå, Sweden; Cementa AB, Malmö, Sweden (corresponding author: )

2. Senior Research Engineer, Tec-Lab, Umeå University, Umeå, Sweden; Nordkalk AB, Köping, Sweden

3. Project Manager, R&D Cement Cementa AB, Stockholm, Sweden

4. Senior Professor, Tec-Lab, Umeå University, Umeå, Sweden

Abstract

Analytical methods for characterising cement raw meal during heating in different atmospheres were investigated. The effect of replacing limestone with 10 wt% slag on the formation of incipient belite and precursors of the clinker liquid in the temperature range 600–1050°C was quantified using thermogravimetry, X-ray diffraction and equilibrium calculations. The results showed that when calculating the lime saturation factor, slags were favoured to sand, resulting in lower amounts of quartz and C2S in the samples containing slag than the reference sample. This suggests that silicon dioxide in slag minerals did not react in this temperature range. The multi-component equilibrium results supported the phase formation sequence established. Allowing for the possible kinetic influences the potential solids solutions offered with the software was a valuable asset. The results showed that the effect of using slags to reduce the carbonate and sand content in a raw meal on potential amounts of incipient C2S was negative. At present, more detailed knowledge is needed regarding how blast-furnace slag and basic oxygen furnace slag contribute to the formation of intermediary compounds such as incipient C2S, C3A, C2F and C4AF in the solid phase at temperatures over 1050°C and affect the formation of C3S.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3