Modelling macroscopic shrinkage of hardened cement paste considering C-S-H densification

Author:

Mazaheripour Hadi1,Faria Rui2,Azenha Miguel3,Ye Guang4

Affiliation:

1. CONSTRUCT, Civil Engineering Department, Faculty of Engineering, University of Porto, Porto, Portugal (corresponding author: )

2. CONSTRUCT, Civil Engineering Department, Faculty of Engineering, University of Porto, Porto, Portugal

3. ISISE, Department of Civil Engineering, School of Engineering, University of Minho, Guimarães, Portugal

4. Microlab, Faculty of Civil Engineering & Geosciences, Delft University of Technology, Delft, The Netherlands

Abstract

Shrinkage of hardened cement paste is a direct result of its desorption isotherm. The relationship between the desorption isotherm and the relative humidity in a hydrating cement paste is mainly controlled by the pore size distribution (nanopores to micropores). There are several hydration models to describe the microstructure of cement paste, but the desorption isotherm and self-desiccation are not direct outputs from those models as they are usually given as constitutive inputs. In this study an attempt was made to fill this gap by predicting the sorption isotherm, the drying shrinkage and the self-desiccation of cement paste directly from the evolution of its microstructure. A simple hydration model was developed to predict the microstructure of Portland cement pastes, as well as the nanostructure of calcium silicate hydrate (C-S-H), considering its densification during cement hydration. Predictions from the model were compared with some recent experimental findings from studies in the literature where the influence of the water-to-cement ratio was evaluated. The main contribution of this work is the integration of nanoscale and microscale material models towards determining the macroscopic properties of cement paste.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3