Author:
COLAS A.-S.,MOREL J.-C.,GARNIER D.
Abstract
Drystone walling is a widespread form of construction that utilises local materials. It has received growing interest over the past few years, owing to the recognition of its rich heritage in the framework of sustainable development. However, the growth of dry masonry has been slowed by the lack of scientific evidence proving its reliability. The authors have previously established a model based on yield design to assess drystone wall stability. This theoretical approach has been supplemented by field experiments on full-scale drystone retaining walls that were backfilled until failure with a cohesionless soil. These field experiments followed a first set of experiments in 2002–2003 in which the walls were loaded using hydrostatic pressure. The aim of these experimental programmes was to achieve better understanding of drystone masonry behaviour under loading, and of its failure mode. The present paper consists of a comparative analysis of these theoretical and experimental results, and provides a richer understanding of drystone retaining wall phenomenology. Further perspectives on this work are presented in the conclusion.
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献