Effect of time on spudcan–footprint interaction in clay

Author:

GAN C.T.,LEUNG C.F.,CASSIDY M.J.,GAUDIN C.,CHOW Y.K.

Abstract

Mobile drilling platforms often return to sites where previous installation, operation and extraction have formed footprints on the seabed. Owing to soil consolidation during the jack-up operational period and the intervening period before reinstallation, the interaction between a new spudcan installation and an existing footprint is complex and time dependent. This paper presents a series of drum centrifuge model tests to investigate the changes in the shear strength of soils beneath and adjacent to a spudcan footprint in normally and overconsolidated clays. The changes with time after two different jack-up operational periods are presented. The results reveal that the soil beneath a footprint generally loses some strength initially, owing to soil remoulding, but it subsequently regains its strength with time as it reconsolidates. The soil remoulding and subsequent strength gain are found to be more significant in normally consolidated clay than in overconsolidated clay. A longer jack-up operational period has an effect of strengthening the underlying soil below the spudcan in both clays. The vertical load, induced horizontal load and moment on a spudcan during its reinstallation into an existing footprint at different times after footprint formation are studied. Compared with the load for installing a spudcan for the first time, the load required to reinstall the same spudcan to the same depth is smaller in normally consolidated clay if the elapsed time between footprint formation and spudcan reinstallation is relatively short. The required load for spudcan reinstallation subsequently increases with footprint elapsed time. For overconsolidated clay, the load required for spudcan reinstallation is always smaller than that for initial spudcan installation, irrespective of the time between installations. The effects of original in situ soil strength, changes in soil strength with time and footprint elapsed time on the interaction between spudcan and footprint are examined.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3