The interplay between anisotropy and strain localisation in granular soils: a multiscale insight

Author:

Zhao J.1,Guo N.1

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.

Abstract

This paper presents a multiscale investigation on the interplay among inherent anisotropy, fabric evolution and strain localisation in granular soils, based on a hierarchical multiscale framework with rigorous coupling of the finite-element method (FEM) and discrete-element method (DEM). DEM assemblies with elongated particles are generated to simulate inherent anisotropy and are embedded to the Gauss points of the FEM mesh to derive the required constitutive relation. Specimens prepared with different bedding plane angles are subjected to biaxial shear under either smooth or rough loading platens. Key factors and physical mechanisms contributing towards the occurrence and development of strain localisation are examined. The competing evolutions of two sources of anisotropy, one related to particle orientations and the other related to contact normals, are found to underpin the development of the shear band. A single band pattern is observed under smooth boundary conditions, and its orientation relative to the bedding plane depends critically on the relative dominance between the two anisotropies. Under rough boundary conditions, the non-coaxial material response and the boundary constraint jointly lead to cross-shaped double shear bands. The multiscale simulations indicate that the DEM assemblies inside the shear band(s) undergo extensive shearing, fabric evolution and particle rotation, and may reach the critical state, while those located outside the shear band(s) experience mild loading followed by unloading. The particle-orientation-based fabric anisotropy needs significantly larger shear and dilation for mobilisation than the contact-normal based one. The asynchrony in evolution of the two fabric anisotropies can cause non-coaxial responses for initially coaxial packings, which directly triggers strain localisation.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3