Discrete-element method analysis of the state parameter

Author:

HUANG X.,O'SULLIVAN C.,HANLEY K.J.,KWOK C.Y.

Abstract

Using a series of true triaxial simulations, this study shows that the particulate discrete-element method (DEM) can capture the state-dependent drained and undrained response that is typical for sands. The most significant finding is that relationships between the initial state parameter and both the dilatancy at the peak strength and the difference between the peak and critical state strengths observed in the DEM simulations lie within the range defined by the experimental data. As indicated by the DEM data, this relationship is independent of loading path (intermediate principal stress ratio). The correlations between the initial state parameter and both the peak strength and the stress ratio at the undrained instability state are qualitatively in accordance with previously published laboratory data. The DEM data agree well with the NorSand constitutive model. The relationships between the state parameter and both structural anisotropy at the peak stress and the coordination number are explored. These findings extend current understanding of the capacity of DEM to capture the mechanical behaviour of granular materials and highlight the possibility of using DEM as a tool when developing advanced constitutive models.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference42 articles.

1. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions

2. A state parameter for sands

3. The strength and dilatancy of sands

4. Cavarretta I. The influence of particle characteristics on the engineering behaviour of granular materials. PhD thesis, 2009, Imperial College, London, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3