Simplified finite-element modelling for tunnelling-induced settlements

Author:

Likitlersuang Suched1,Surarak Chanaton2,Suwansawat Suchatvee3,Wanatowski Dariusz4,Oh Erwin5,Balasubramaniam Arumugam5

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

2. 111th Engineer Battalion, Royal Thai Army, Thailand

3. Civil Engineering Department, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

4. Faculty of Science and Engineering, University of Nottingham Ningbo, China

5. School of Engineering, Griffith University, Gold Coast Campus, Queensland, Australia

Abstract

Tunnelling-induced ground surface settlement prediction still adopts empirical and analytical approaches; thus a step further in using a practical numerical analysis is now a challenging task. Because the deformation during tunnelling is a three-dimensional problem, several features were incorporated in two-dimensional analyses to capture aspects that are important in governing behaviour in the missing third dimension. This paper aims to present simplified methods for ground settlement computation of tunnelling works using the PLAXIS finite-element programme. Three simplified methods – contraction ratio, stress reduction and modified grout pressure – were considered in this study. Practical application requires correlations among these three methods. Such correlations among the three methods are proposed in this study and can be used in geotechnical practice. The results were based on a series of finite-element analyses of the Blue Line Bangkok Mass Rapid Transit tunnels. The geotechnical parameters were selected based on soil investigation reports carried out for construction purposes. The soil constitutive model adopted herein was the hardening soil model on soft and stiff clays. All the finite-element simulations were compared with the measured field deformations. Therefore, the analysis results can be considered as a Class-C prediction (back-analysis).

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3