Kinetics of sorption in bio-based materials: theory and simulation of a demonstrator wall

Author:

Reuge Nicolas1ORCID,Collet Florence2ORCID,Pretot Sylvie2ORCID,Moissette Sophie2,Bart Marjorie2,Lanos Christophe3ORCID

Affiliation:

1. Postdoctoral researcher, Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, Axe Ecomatériaux pour la construction, Rennes, France (corresponding author: )

2. Lecturer, Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, Axe Ecomatériaux pour la construction, Rennes, France

3. Professor, Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, Axe Ecomatériaux pour la construction, Rennes, France

Abstract

The classical models describing hygric transport inside building materials seem unsuitable for bio-based materials. Based on the assumption of an instantaneous local equilibrium between relative humidity and water content evolving according to the sorption isotherms, they predict much shorter stabilisation times than those obtained experimentally. A new approach is presented here: it frees from the local instantaneous equilibrium by introducing local kinetics to describe the transformation of water from the vapour state to the absorbed liquid state and vice versa. In the framework of the European IsoBio project, a multilayered wall mainly made of bio-based materials was developed. The different layers were characterised in terms of sorption, vapour permeabilities and thermal conductivities. The sorption measurements performed on representative samples allowed determination of the local kinetic constants. The hygrothermal behaviour of the test wall was then studied in an instrumented demonstrator (Hive, Wroughton, UK). The recorded measurements were compared with simulations based on the instantaneous local equilibrium model (TMC code) and on the local kinetics of sorption model (TMCKIN code). TMC very significantly underestimated the dynamics of the local relative humidity variations whereas TMCKIN succeeded in predicting these dynamics and produced results close to measurements.

Publisher

Thomas Telford Ltd.

Subject

Mechanics of Materials,General Materials Science,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Award-winning paper in 2021;Proceedings of the Institution of Civil Engineers - Construction Materials;2023-01

2. Hygrothermal transfers through a bio-based multilayered wall: Modeling study of different wall configurations subjected to various climates and indoor cyclic loads;Journal of Building Physics;2023-01

3. Editorial;Proceedings of the Institution of Civil Engineers - Construction Materials;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3