Characterising existing buildings as material banks (E-BAMB) to enable component reuse

Author:

Rose Colin M1ORCID,Stegemann Julia A2ORCID

Affiliation:

1. Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK

2. Centre for Resource Efficiency and the Environment, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK

Abstract

As-built records for existing buildings tend to be poor. Components that make up the existing building stock must be better characterised to prevent them becoming waste. The first record of materials in an existing building is often the waste report, which classifies materials for waste management and gathers information after the opportunity for higher-value reuse of components has passed. Policy at various levels aims to increase reuse, but an understanding of ‘existing buildings as material banks’ (E-BAMB) is a necessary precursor to overcoming other barriers. This paper reviews the current means of understanding E-BAMB and identifies its shortfalls. This analysis leads to the conception of a strategy in which the various approaches are organised as an information system. The future role of technology and mandatory provision of E-BAMB information at the planning stage are explored. The proposed system would enable specifiers, manufacturers and academics to assess the wealth of materials that can be reused, repurposed or upcycled in new projects or businesses. This does not guarantee that actual reuse will occur, as financial, technical and legal barriers may remain. However, it creates the context for assessing secondary components against their virgin equivalents and the enabling conditions for new circular business models.

Publisher

Thomas Telford Ltd.

Subject

Civil and Structural Engineering

Reference88 articles.

1. Circular economy in construction: current awareness, challenges and enablers

2. Ali AK 2012 Re-defining the Architectural Design Process through Building a Decision Support Framework for Design with Reused Building Materials and Components. PhD thesis Virginia Polytechnic Institute and State University Blacksburg, VA, USA

3. Towards building information modelling for existing structures

4. Studying construction materials flows and stock: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3