Stability of ettringite in CSA cement at elevated temperatures

Author:

Kaufmann Josef1,Winnefeld Frank1,Lothenbach Barbara1

Affiliation:

1. Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Dübendorf, Switzerland

Abstract

Calcium sulfoaluminate cements are promising low carbon dioxide alternatives to Portland cement. Their main hydration products are ettringite and aluminium hydroxide. Ettringite has recently been identified as a potential heat storage material. The reversible dehydration of ettringite to metaettringite at elevated temperatures and under dry conditions involves a relatively high enthalpy, which can be used for (seasonal) heat storage. In this context, the effect of elevated temperatures (up to 110°C) and humidity conditions (steam curing and dry curing) on the stability of ettringite in calcium sulfoaluminate was studied experimentally using thermogravimetric analysis, X-ray diffraction and thermodynamic modelling. The experimental results show that ettringite decomposes under steam curing conditions at temperatures far below 100°C to monosulfate. This may lead to delayed ettringite formation when the temperature is lowered again under humid or wet conditions. Under dry conditions at low water vapour saturation, the expected dehydration of ettringite to metaettringite is found. A thermodynamic model for the stability of hydrated calcium sulfoaluminate cements based on cement composition and calculations of thermodynamic equilibria has been established. The modelled phase development under different hygro-thermal conditions agrees well with the experimental findings. Stable heating and drying conditions for calcium sulfoaluminate based heat storage materials could be identified.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3