Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete

Author:

Wang Dehui1,Shi Caijun2,Wu Zemei3,Wu Linmei1,Xiang Shuncheng1,Pan Xiaoying1

Affiliation:

1. College of Civil Engineering, Hunan University, Changsha, PR China

2. College of Civil Engineering, Hunan University, Changsha, PR China (corresponding author: )

3. College of Civil Engineering, Hunan University, Changsha, PR China; Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA

Abstract

In this paper, the flowability, compressive strength, hydration heat, porosity and calcium hydroxide content of cement–silica fume–fly ash-based ultra-high-strength concrete (UHSC) incorporating either nano-silica (SiO2) or nano-calcium carbonate (CaCO3) were investigated. Test results showed that the flowability of UHSC was reduced by incorporating nano-silica and nano-calcium carbonate. After incorporating nano-silica, the hydration heat flow of UHSC increased, and the hydration heat of UHSC increased at first but decreased later. For UHSC with nano-calcium carbonate, the hydration heat flow increased and the hydration heat decreased. With the increase of both nano-silica and nano-calcium carbonate content, the compressive strength of UHSC increased at first and then decreased. The porosity decreased at first and increased later with the increase of nano-silica and nano-calcium carbonate content. As regards the calcium hydroxide content, this decreased with the increase of nano-silica content, but increased with the increase of nano-calcium carbonate content.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3