Characterisation of state bounding surface at low effective stresses in clayey soils having different structures

Author:

Panta A.1,Nishimura S.2

Affiliation:

1. Graduate School of Engineering, Hokkaido University, Hokkaido, Japan

2. Faculty of Engineering, Hokkaido University, Hokkaido, Japan

Abstract

Shallow stability analysis of natural or man-made soil slopes requires accurate characterisation of soil strength at low effective stresses (5–20 kPa), corresponding to mechanisms expected at 1–2 m depth. This study focused on the intertwining effects of soil structures at different scales and low stresses on the undrained strength of fine-grained soils, by testing two natural plastic clays and a clay–sand mixed soil at different states (intact, reconstituted and compacted) in a series of constant-volume direct shear and hollow cylinder simple shear tests. The non-linearity of the Hvorslev bounding surface was expressed well by a power law function. The normalised strength and the degree of its non-linearity of the clays at intact states were higher than at equivalent reconstituted states, probably owing to true inter-particle cohesion, as confirmed by the hollow cylinder apparatus tests. The compacted states led to significantly lower normalised strength than the reconstituted state in both clays, while they did not show significant difference in the clay–sand mixed soil. This observation was explained by meso-scale discontinuities by X-ray micro-computed tomography images. Compacted clays’ shear strength is associated with a meso-fabric very different from that in more homogeneous intact and reconstituted clays, and the conventional state normalisation based on the equivalent pressure does not capture it.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3