Evolution of deformation and breakage in sand studied using X-ray tomography

Author:

Karatza Z.12ORCID,Andò E.2,Papanicolopulos S.-A.3,Ooi J. Y.3,Viggiani G.2

Affiliation:

1. School of Engineering, The University of Edinburgh, Edinburgh, UK

2. Univ. Grenoble Alpes, CNRS, Grenoble INP, Laboratoire 3SR, Grenoble, France.

3. School of Engineering, The University of Edinburgh, Edinburgh, UK.

Abstract

Particle breakage of a granular material can cause significant changes in its microstructure, which will govern its macroscopic behaviour; this explains why the mechanisms leading to particle breakage have been a common subject within several fields, including geomechanics. In this paper, X-ray computed micro-tomography is used, to obtain three-dimensional images of entire specimens of sand, during high-confinement triaxial compression tests. The acquired images are processed and measurements are made on breakage, local variations of porosity, volumetric strain, maximum shear strain and grading. The evolution and spatial distribution of quantified breakage and the resulting particle size distribution for the whole specimen and for specific areas are presented here for the first time and are further related to the localised shear and volumetric strains. Before peak stress is reached, compaction is the governing mechanism leading to breakage; neither compressive strains nor breakage are significantly localised and the total amount of breakage is rather low. Post peak, in areas where strains localise and breakage is present, a dilative volumetric behaviour is observed locally, as opposed to the overall compaction of the specimen. Some specimens exhibited a compaction around the shear band at the end of the test, but there was no additional breakage at that point. From the grading analysis, it is found that mainly the grains with diameter close to the mean diameter of the specimen are the ones that break, whereas the biggest grains that are present in the specimen remain intact.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3