Theoretical framework for predicting the response of tolerably mobile subsea installations

Author:

Cocjin M. L.1,Gourvenec S. M.1,White D. J.1,Randolph M. F.1

Affiliation:

1. Centre for Offshore Foundation Systems – M053, A node of ARC Centre for Geotechnical Science and Engineering, University of Western Australia, Perth, WA, Australia.

Abstract

Tolerable mobility of subsea foundations and pipelines supporting offshore oil and gas developments has recently become an accepted design concept. It enables a smaller foundation footprint and so is a potential cost-saving alternative to conventionally engineered ‘fixed’ seabed foundations. Dominant sources of loading on subsea infrastructure arise from connection misalignment or thermal and pressure-induced expansion, and these are reduced if the structure is permitted to displace while ensuring that additional loading is not induced by excessive settlements. A sound prediction of the resulting sliding response will provide a robust design basis for mobile subsea infrastructure. This paper presents a theoretical model based on critical state soil mechanics to predict the performance of a subsea installation that is founded on soft, normally consolidated or lightly overconsolidated soil, and subjected to intermittent horizontal sliding movements. The framework is validated against centrifuge test results and is shown to capture the essential elements of the soil–structure interaction, which include: (a) the changing soil strength from cycles of sliding and pore pressure generation; (b) the regain in strength due to dissipation of excess pore pressure (consolidation); and (c) the soil contraction and consequent settlement of the foundation caused by the consolidation process.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3