Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective

Author:

Qin C.-B.1,Chian S. C.1

Affiliation:

1. Department of Civil and Environmental Engineering, National University of Singapore, Singapore.

Abstract

Slopes are more vulnerable to instability when subjected to earthquake ground shaking. In order to account for the dynamic forces induced by ground shaking, a novel procedure is introduced in this paper to estimate slope stability under the ultimate limit state with a combination of pseudo-dynamic approach and discretisation technique. A pseudo-dynamic approach is adopted which allows the introduction of an arbitrary time history of seismic accelerations. In order to consider non-uniformity of soil properties of the slope, the discretisation technique is proposed with the aim of generating a potential failure mechanism with discretised points by forward difference ‘point-to-point’ method. Infinitesimal trapezoidal elements composed of successive discretised points and sloping surface are selected for kinematic analysis. In this way, the problem is decomposed into separate components, which aids computational effort. The upper-bound solutions of limiting surcharge loading and yield seismic acceleration are thereafter obtained with the equilibrium of total external work rate and internal energy dissipation rate through the summation from all infinitesimal elements. The methodology is validated through comparison with its degraded approach and conventional upper-bound analysis. Further parametric study is also carried out to highlight the influence of the various soil and loading parameters on the critical seismic acceleration.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3