Model-based interpretation of undrained creep instability in loose sands

Author:

Marinelli F.1,Pisanò F.2,Di Prisco C.3,Buscarnera G.1

Affiliation:

1. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.

2. Geo-Engineering Section/Offshore Engineering Section, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, the Netherlands.

3. Civil and Environmental Engineering Department (DICA) at Politecnico of Milano, Milan, Italy.

Abstract

Evidence shows that in the presence of extended stages of undrained creep, loose sands may approach liquefaction instabilities with a non-negligible time lag with respect to the application of loading. In this paper, a mechanical interpretation of such delayed failure events is provided by using stability criteria for rate-dependent materials. For this purpose, a viscoplastic constitutive law for sands has been calibrated to replicate delayed failure processes documented in the literature. To explain the origin of the transition from stable to unstable creep, the model predictions have been inspected from a mathematical standpoint and a strategy to evaluate the time required for the initiation of failure has been provided. The analyses show that the acceleration of the creep strains anticipates the sharp increase in the rate of pore water pressure, thus constituting a precursor to runaway failure. Furthermore, the computed stresses at which the two variables accelerate are located in proximity of the instability line for static liquefaction, with a shift from it that depends on the rate of loading prior to creep and the soil viscosity. These findings provide support to understand the interplay between rate-dependent soil properties and delayed liquefaction by offering a new conceptual platform to interpret the temporal evolution of flow failures observed under field or laboratory conditions.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3