Softening and consolidation around seabed pipelines: centrifuge modelling

Author:

Cocjin M. L.1ORCID,Gourvenec S. M.2,White D. J.2

Affiliation:

1. Centre for Offshore Foundation Systems – M053, a node of ARC Centre for Geotechnical Science and Engineering, University of Western Australia, Crawley, Perth, WA, Australia.

2. Centre for Offshore Foundation Systems, a node of the ARC Centre for Geotechnical Science and Engineering, University of Western Australia, Crawley, Perth, WA, Australia.

Abstract

Solutions for lateral breakout and axial response of submarine pipelines are well established if the undrained shear strength conditions of the soil are known and defined simply (such as uniform or increasing proportionally with depth). In reality, the geometry of the free surface and the distribution of undrained shear strength around a submarine pipeline post-lay are affected by the lay process. This is because of soil berms that form adjacent to the pipe, and remoulding and subsequent reconsolidation of the seabed. The effect of post-lay consolidation on the subsequent lateral and axial response of submarine pipelines has not been previously investigated through physical model testing. This paper presents results from centrifuge model tests describing lateral breakout behaviour of a pipe on soft clay as a function of (a) pipe installation conditions, (b) post-lay pipe weight and (c) consolidation prior to breakout. In addition, the effect of post-lay consolidation on axial pipe response is studied. The experimental results are compared with available numerical and analytical predictions. The results quantify the influence of the installation process, pipe weight and post-installation consolidation on the lateral breakout resistance and trajectory of the pipe and also the axial pipe response, and show how existing prediction methods can capture these effects.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3