Experimental validation of a coupled hydro-mechanical model for vegetated soil

Author:

Świtała B. M.1ORCID,Askarinejad A.2,Wu W.3,Springman S. M.4

Affiliation:

1. Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland.

2. Faculty of Civil Engineering and Geosciences, TU Delft, CN Delft, the Netherlands.

3. Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.

4. Institute for Geotechnical Engineering, ETH Zürich, Zürich, Switzerland.

Abstract

A coupled hydro-mechanical model is presented to account for the influence of plants on the mechanical and hydrological behaviour of soil. A modified Cam-Clay model is implemented in a finite-element code to consider the combined effect of vegetation by way of root reinforcement and evapotranspiration. The model is calibrated and validated by laboratory tests on soil containing roots. A vegetated soil sample is subjected to cycles of wetting and drying. The pore pressure is measured by tensiometers installed at different depths. Numerous tests on root-reinforced and non-reinforced soil are carried out. The enhancement in soil strength is obtained by comparing the test results. The tests are simulated using the numerical model and the results are compared with the experimental data.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3