Modelling of gas transport in proton exchange membrane fuel cells

Author:

Ahmadi Nima1,Rezazadeh Sajad2,Dadvand Abdolrahman2,Mirzaee Iraj3

Affiliation:

1. Mechanical Engineering Department, Urmia University of Technology, Urmia, Iran (corresponding author: )

2. Mechanical Engineering Department, Urmia University of Technology, Urmia, Iran

3. Mechanical Engineering Department, Urmia University, Urmia, Iran

Abstract

A three-dimensional numerical model has been developed to simulate a proton exchange membrane fuel cell. The governing equations were discretised and solved using a finite-volume technique and the numerical results were verified by empirical test results. In the numerical procedure, the species, temperature and protonic conductivity distribution in various voltages were modelled with great accuracy. The results have shown that by lowering the cell voltage, the maximum temperature at the cathode catalyst–membrane interface will increase. The effects of semi-circular and semi-elliptical gas channel cross-sections on cell performance were studied and compared with base model results. This showed that the elliptical model generates more current density at the same voltage. On the other hand, oxygen distribution is more uniform in geometries in which the value of cathode overpotential has a direct link with oxygen magnitude. Cathode overpotential is also sensitive to shoulder width and oxygen distribution; so the elliptical model presents better performance than the other models. Ultimately, all the numerical and experimental results are compared with published experimental data by Wang et al., which demonstrate desirable agreement.

Publisher

Thomas Telford Ltd.

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3