Effects of temperature and suction on secant shear modulus of unsaturated soil

Author:

Zhou C.1,Xu J.2,Ng C. W. W.1

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HKSAR

2. Geotechnical Research Institute, College of Civil and Transportation Engineering, Hohai University, Nanjing, China

Abstract

Understanding of the secant shear modulus (G) of soil at small strains (lower than 1%) is essential to predict the performance of many earth structures in working conditions. Furthermore, soils at shallow depth are often unsaturated and subjected to variations of suction and temperature. Yet the effects of suction and temperature on G of unsaturated soils at small strains are often neglected and not fully understood. In this study, the secant shear modulus of an unsaturated silt was measured at various suctions and temperatures using a suction- and temperature-controlled triaxial apparatus with local strain measurement. The experimental results confirm that the shear modulus of unsaturated soil at small strains considerably increases with increasing suction under isothermal conditions, due to increases in the average skeleton stress and the stabilisation effects on the soil skeleton induced by meniscus water. On the other hand, at constant suction, G decreases as temperature increases. This is likely due to a reduction of the air–water surface tension with an increase in soil temperature, leading to a reduced influence of suction on G values.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3