Predictive model for chloride penetration through concrete

Author:

Khitab A.1,Lorente S.1,Ollivier J. P.1

Affiliation:

1. Laboratoire Matériaux et Durabilité des Constructions, Institut National des Sciences Appliquées, Université Paul Sabatier (INSA/ UPS) Toulouse, France

Abstract

This work documents a numerical model, the objective of which is to predict the chloride penetration through saturated concrete. The model solves the Nernst–Planck/current law equations and accounts for the chloride interactions with the solid phase. In addition to boundary conditions, it requires a set of five experimental characteristics available from a single sample of material namely: density; porosity; pore solution composition; effective chloride diffusion coefficient; and chloride binding isotherm. The input data do not evolve with time; the exceptions are the ionic diffusivities, which are time dependent. The method used to obtain the input data is outlined. Particular attention is paid to the metrology of the unsteady state migration test, which makes it possible for the chloride diffusion coefficient to be measured. The manner in which the chloride binding isotherm is reached is emphasised. Finally, the method is validated by comparing the numerical simulations with experimental results made on a CEM-I-based concrete.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Reference19 articles.

1. Tang L. Chloride Transport in Concrete. Measurements and Prediction. PhD Thesis, 1996, Chalmers University of Technology, Göteborg.

2. A two-dimensional model of electrochemical chloride removal from concrete

3. Numerical simulation of multi-species transport through saturated concrete during a migration test — MsDiff code

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3