Excitation-wavelength-dependent photoluminescence/electrical conductivity of copper oxide nanorods

Author:

Bajwa Amardeep1,Kaur Harpreet2,Kumar Sanjeev3,Singh Gurjinder4ORCID

Affiliation:

1. Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India

2. Department of Physics, Chandigarh University, Mohali, India

3. Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India

4. Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India; Department of Electrical and Electronics and Communication Engineering, DIT University, Dehradun, India

Abstract

This research work reports the synthesis of copper (II) oxide (CuO) nanoparticles using the wet chemical co-precipitation method. The synthesised nanoparticles were characterised using ultraviolet–visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy and high-resolution transmission electron microscopy in terms of absorption, crystal structure and size, morphology and elemental composition, and particle size. The existence of functional groups was verified by Fourier transform infrared spectroscopy. The synthesised copper (II) oxide nanoparticles showed an absorption peak at 397 nm, and a Tauc’s plot study showed a band-gap energy of 3.2 eV. The effects of varied excitation energies – namely, 3.81 and 3.54 eV – on the emission spectra of rod-shaped nanoparticles were assessed through photoluminescence spectroscopy, and the release of red, orange, green, violet and yellow colours was observed. The voltage–current characteristics of nanoparticle pellets were measured using a two-probe technique. The increase in the direct-current electrical conductivity of pellets heated at 100 and 200°C was ascertained. Overall, this research work provides valuable insights into the electronic properties of copper (II) oxide nanoparticles, which could have potential applications in various fields such as catalysis and electronics.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3