Laboratory study on impulse current characteristics of clay

Author:

Rao Pingping1,Chen Qingsheng2,Nimbalkar Sanjay3,Liu Yang1

Affiliation:

1. Department of Civil Engineering, University of Shanghai for Science and Technology, Shanghai, China

2. Centre for Geomechanics and Railway Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong City, Australia

3. School of Civil and Environmental Engineering, Centre for Built Infrastructure Research (CBIR), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia. (Formerly Research Fellow, Centre for Geomechanics and Railway Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong City, Australia)

Abstract

Lightning is recognised as one of the most detrimental natural disasters. While numerous research studies were carried out on the lightning impulse characteristics of the grounding system and the critical breakdown characteristics of soil, little attention was paid to the impulse current characteristics of soils when lightning strikes. In this study, the performance of typical soft soil in Shanghai under the action of lightning is analyzed. Different factors, including the impulse current waveforms, the front time and half peak time of impulse current, the quantity of electric charge and absorption of unit heat, have been studied by performing a series of laboratory tests. The test results show that the variation of impulse current due to lightning strike is time dependent. The higher the soil temperature, the larger the peak impulse current produced during lightning strike. The value of the front time decreases exponentially, while the value of the half peak time decreases linearly with the rise of soil temperature. Novel empirical relationships between the impulse current characteristics of soil and soil temperature are proposed, with the aim of providing useful practical references for the design of a grounding system for lightning strikes.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3