Utilisation of carbonating olivine for sustainable soil stabilisation

Author:

Fasihnikoutalab Mohammad Hamed1,Asadi Afshin2,Huat Bujang Kim1,Ball Richard J.3,Pourakbar Shahram1,Singh Parminder4

Affiliation:

1. Faculty of Engineering, Department of Civil Engineering, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia

2. Housing Research Centre, Faculty of Engineering, Department of Civil Engineering, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia

3. BRE Centre for Innovative Construction Materials, Department of Architecture and Civil Engineering, University of Bath, Bath, UK

4. LorongMaarof Taman Bukit Bandaraya, Kuala lumpur

Abstract

This paper describes the first study demonstrating the potential of olivine as a soil stabiliser. Olivine has been shown to provide a reactive source of magnesium oxide capable of sequestering carbon dioxide. The effects of olivine additions on consistency limits, compaction characteristics and unconfined compressive strength (UCS) of soil are described. The effect of carbon dioxide pressure, and carbonation period, on the UCS of olivine-treated soil is of great importance in defining treated properties. Results highlight the benefits of olivine in soft soil stabilisation with reference to the UCS. Use of 20% olivine decreased the plasticity index and optimum moisture content while increasing the maximum dry density of the soil. The greatest strength was developed after carbonation at 200 kPa for 168 h in the soil containing 20% olivine. Structural and compositional analysis using scanning electron microscopy and X-ray diffraction confirmed the benefits of olivine in terms of decreasing the discontinuity of soil. This was attributed to the crystallisation products responsible for strength development after carbonation, respectively. The paper is significant as it presents a more environmentally friendly method of stabilising soils compared with alternative methods using high embodied energy binders such as cement.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3