Geothermal energy in loess

Author:

Bidarmaghz Asal1,Makasis Nikolas1,Narsilio Guillermo A.1,Francisca Franco M.2,Carro Pérez Magalí E.3

Affiliation:

1. Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia

2. Institute for Advanced Studies in Engineering and Technology (IDIT), Universidad Nacional de Córdoba and Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Córdoba, Argentina

3. IDIT, Universidad Nacional de Córdoba and Conicet, Córdoba, Argentina

Abstract

Ground-source heat pump (GSHP) systems efficiently heat and cool buildings by using sustainable geothermal energy accessed by way of ground heat exchangers (GHEs). Loess covers vast parts of the world, about 10% of the landmass; therefore, the use of piles or ‘micropiles’ is extensive in these areas, particularly where the thickness of loessic soils is significant. These deep foundations have the potential to be used as ‘energy piles’ in GSHP systems, with a minimal additional cost. This paper presents a case study of a representative real building in Córdoba, Argentina, where foundations are also used as GHEs. The thermal properties of local soils were experimentally measured and used in recently developed detailed state-of-the-art finite-element models. Results from the realistic simulations show that the partial substitution of electrical heating and cooling systems with geothermal systems could significantly reduce energy consumption and the size of associated infrastructure, despite the relatively low thermal conductivity of local loess. Moreover, the effects of surface air temperature fluctuations, which are routinely ignored in GHE design, are accounted for in these simulations. This case study shows the potential of GSHP technology in loessic environments and gives incentives to engineers to start considering the technology in their designs and practices.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Reference38 articles.

1. Thermo-mechanical behaviour of energy piles

2. A Theory of Fluid Flow in Compliant Tubes

3. Bidarmaghz A 2014 3D Numerical Modelling of Vertical Ground Heat Exchangers. PhD thesis The University of Melbourne Australia

4. Energy foundations and other thermo-active ground structures

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3