Energy balance at the soil atmospheric interface

Author:

Sedighi Majid1,Hepburn Benjamin D P2,Thomas Hywel R2,Vardon Philip J3

Affiliation:

1. School of Mechanical, Aerospace and Civil Engineering, Faculty of Engineering, The University of Manchester, Manchester, UK

2. Geoenvironmental Research Centre, School of Engineering, Cardiff University, Cardiff, UK

3. Section of Geo-engineering, Delft University of Technology, Delft, the Netherlands

Abstract

Soil atmospheric interactions play an important role within the thermal energy balance and seasonal temperature variations of the ground. This paper presents a formulation for the surface boundary conditions related to interactions between soil and atmosphere. The boundary condition formulated considers heat flow at the soil–atmosphere interface through mechanisms of shortwave radiation, long-wave radiation, sensible radiation and latent heat radiation. The effects of surface moisture flux on energy balance at the interface are explicitly included in the formulation. The developed boundary condition has been implemented in a numerical model for coupled thermal, hydraulic and mechanical behaviour of unsaturated soils. The evaporation component of the model is tested, and the results are compared with data from an experimental study at the surface of an area of agricultural land reported in the literature. The results of modelling have been found to compare favourably with the reported data set. The formulation developed for the soil atmospheric boundary condition allows climatic variables, including solar radiation, ambient air temperature, relative humidity, wind speed, rainfall and evaporation, to be incorporated in the long-term analysis of energy balance. This also enables a further detailed inspection of the climate’s role in ground thermal behaviour of ground source heat systems.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3