Heat transfer within frozen slopes in subarctic Yukon, Canada

Author:

Steeves Joel T12,Barbour Sidney Lee2,Ferguson Grant2,Carey Sean K3

Affiliation:

1. O’Kane Consultants Inc., Calgary, AB, Canada

2. Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, SK, Canada

3. School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada

Abstract

The dominant mechanism of heat transfer during ground thaw is typically assumed to be vertical conduction. However, the addition of lateral subsurface water flow introduces the potential for the forced convection of energy, having an influence on ground temperatures and thaw rates. Field observations of snowmelt run-off and rates of ground thaw for two slopes within the Wolf Creek basin, Yukon, Canada, highlighted different rates of ground thaw with slope position. Ground temperatures were numerically simulated to evaluate the relative influence of conduction and convection on the thawing of these slopes; each slope comprised different soils and had a different slope aspect. Both slopes were composed of an organic layer overlying a mineral soil. Lateral water flow above the frozen layer occurred within both slopes as a result of a perched saturated zone above the organic–mineral interface. The numerical models reveal that lateral diversion within a surficial, high-hydraulic conductivity layer, such as an organic layer, can initiate convective heat transfer. However, the observed differential thaw was determined to be a result of conduction and variations in the initial ice content and snow cover rather than lateral convection of heat.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3