Characterisation of interface friction strain-rate dependency of soft sediments at low stresses using a ring penetrometer

Author:

Singh Vikram1,Mohr Henning1,Stanier Sam2,Bienen Britta1,Randolph Mark F.1

Affiliation:

1. Centre for Offshore Foundation Systems, University of Western Australia, Perth, WA, Australia.

2. Cambridge University Engineering Department, University of Cambridge, Cambridge, UK.

Abstract

The ring penetrometer is a shallow rotational penetrometer that has been developed to characterise the mechanical behaviour of surficial marine sediments. The strain-rate dependency of soils is crucial to the design of a wide range of offshore geotechnical infrastructure founded in the upper layers of the seabed (e.g. pipelines, cables and shallow foundations). This paper explores the potential application of a ring penetrometer test to measure the strain-rate dependency of the interface friction generated in soft soils at low stresses. Large-deformation numerical models of the test are developed using an elastoplastic constitutive model and a viscoplastic variant with strain softening. Using parameters representative of kaolin clay and a calcareous silt from an offshore location, the numerical analyses demonstrate a clear and measurable influence of both the viscous and strain-softening behaviours on the device–soil interface friction. These simulations were used to design suitable experimental protocols for multi-rate ring penetrometer tests, the results of which yielded a strain-rate dependency of 9–16% and 22–26% per log cycle in the kaolin clay and calcareous silt, respectively, which compare favourably with measurements derived from T-bar twitch experiments. Finally, models are presented that can be applied in the interpretation of varying-rate ring penetrometer test data for application in practice.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3