Experimental investigation of the seismic performance of caisson foundations supporting bridge piers

Author:

Gaudio Domenico1ORCID,Madabhushi S. P. Gopal2ORCID,Rampello Sebastiano1ORCID,Viggiani Giulia M. B.2ORCID

Affiliation:

1. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy.

2. Department of Engineering, University of Cambridge, Cambridge, UK.

Abstract

Allowing the transitory attainment of bearing capacity of caisson foundations supporting bridge piers during strong seismic events can lead to substantial optimisation in their design and major cost savings. If the approach of capacity design is applied to geotechnical systems, the temporary triggering of plastic mechanisms may be permitted if the resulting permanent displacements are smaller than given threshold values. To validate this design approach, the seismic performance of caisson foundations was assessed through dynamic centrifuge testing on reduced-scale models. This paper presents the results of two tests in which a caisson–pier–deck system was embedded in a typical alluvial deposit and subjected to a series of earthquakes of different intensities. The caissons were founded on soft and very soft clay, to either avoid or induce the attainment of plastic soil behaviour under the same seismic inputs. It is shown that both yielding and failure of the layer of very soft clay limit inertial forces transmitted to the superstructure, validating the design approach and some useful empirical relations available in the literature. In contrast, inelastic soil behaviour implies accumulation of permanent rotation and settlement of the system, which must be carefully evaluated to check for fulfilment of performance requirements.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3