Attenuation of erythromycin-laden waste water using the constructed wetland technique

Author:

Adhikary Avishek1,Chakraborty Tapabrata1,Konar Pradyumna2,Pal Supriya1,Ghosh Sudipta3

Affiliation:

1. Department of Civil Engineering, National Institute of Technology Durgapur, Durgapur, India

2. Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India

3. Department of Civil Engineering, Jadavpur University, Kolkata, India

Abstract

Erythromycin (ERY) is environmentally resilient because of its aromatic nature, which hinders degradation. In the present study, silty–sandy soil, with a saturated hydraulic conductivity (K) value of 1.66 × 10−7 m/s, was studied for its potential to remove aqueous ERY using a laboratory-scale constructed wetland. With a dose of 10 g/l, a concentration of 25 mg/l and a contact time of 30 min, the maximum adsorption reached 89.79 ± 1.5%, as found from batch experiments. The Freundlich isotherm (R2= 0.983, n = 0.575, Kf= 0.04 mg/g) was the best fitting among different user models. In the kinetic study, the pseudo-second-order model (qe= 1.297 mg/g, K2= 0.182 g/(mg min)) had the best fit with experimental data. A one-dimensional vertical column study exhibited an exhaustion time of 2.7 days for a 40 mm deep soil bed to remove ERY. A laboratory-scale constructed wetland model composed of silty–sandy soil showed a reduction of ERY of 92.44%. Finally, the results were validated with the CW2D wetland model of the Hydrus software, which corroborated the experimental results. The outcome exhorts that constructed wetlands with silty–sandy soil may be an effective technique for the reduction of ERY present in waste water, which has profound importance from a social health perspective.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3