Prediction of hydraulic conductivity of sodium bentonite GCLs by machine learning approaches

Author:

Li Dong1,Jiang Zhenlong2,Tian Kuo1,Ji Ran2

Affiliation:

1. Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, VA, USA

2. Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA, USA

Abstract

Six machine learning methods (linear regression, logistic regression, extreme gradient boosting (XGBoost), support vector machine, K-nearest neighbours and artificial neural network) were used to predict/classify the hydraulic conductivity of conventional sodium bentonite (Na-B) geosynthetic clay liners (GCLs) to saline solutions or leachates. Data were collected from the literature and randomly divided into two groups – that is, 80% of the data were used to train machine learning models and the rest, 20%, were applied to evaluate model performance. Features that are known to affect the hydraulic conductivity of Na-B GCLs (e.g. mass per unit area of GCLs, monovalent and divalent cations, ionic strength (I), relative abundance of monovalent to divalent cations (RMD), swell index and effective stress) were employed to predict/classify the hydraulic conductivity of Na-B GCLs. Comparative analyses were conducted with seven subsets corresponding to the combination of different features, and the best model was determined through cross-validation. The results showed that XGBoost consistently had the best performance among all methods over all subsets of features for both regression and classification analyses. Subset 4, using the swell index, I, RMD, I 2 × RMD, monovalent cations, divalent cations, effective stress and mass per unit area as features, outperformed all other six subsets in both regression analysis (R 2 = 0.826) and classification analysis (accuracy = 0.887) in the out-of-sample tests.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3